Non-minimal modularity lifting in weight one

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-minimal Modularity Lifting in Weight One

We prove an integral R = T theorem for odd two dimensional p-adic representations of GQ which are unramified at p, extending results of [CG] to the non-minimal case. We prove, for any p, the existence of Katz modular forms modulo p of weight one which do not lift to characteristic zero.

متن کامل

Minimal modularity lifting for GL2 over an arbitrary number field

We prove a modularity lifting theorem for minimally ramified deformations of two-dimensional odd Galois representations, over an arbitrary number field. The main ingredient is a generalization of the Taylor-Wiles method in which we patch complexes rather than modules.

متن کامل

A Modularity Lifting Theorem for Weight Two Hilbert Modular Forms

We prove a modularity lifting theorem for potentially BarosttiTate representations over totally real fields, generalising recent results of Kisin. Unfortunately, there was an error in the original version of this paper, meaning that we can only obtain a slightly weaker result in the case where the representations are potentially ordinary; an erratum has been added explaining this error.

متن کامل

Modularity Lifting beyond the Taylor–wiles Method

We prove new modularity lifting theorems for p-adic Galois representations in situations where the methods of Wiles and Taylor–Wiles do not apply. Previous generalizations of these methods have been restricted to situations where the automorphic forms in question contribute to a single degree of cohomology. In practice, this imposes several restrictions – one must be in a Shimura variety settin...

متن کامل

Modularity lifting theorems for ordinary Galois representations

We generalize the results of [CHT08] and [Tay08] by proving modularity lifting theorems for ordinary l-adic Galois representations of any dimension of a CM or totally real number field F . The main theorems are obtained by establishing an R = T theorem over a Hida family. A key part of the proof is to construct appropriate ordinary lifting rings at the primes dividing l and to determine their i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2018

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle-2015-0071